Ecological risk assessment of multiple hatchery programs in the Upper Columbia Watershed using a Delphi approach

Todd Pearsons, Andrew Murdoch, Keely Murdoch, Tracy Hillman, Joseph Miller, Matt Cooper, Greg Mackey, and Tom Kahler

Ecological Interactions Between Salmon and Other Species

Methods

- Hatchery Committees Identify NTTOC and containment objectives
- Local experts Populate Hatchery, NTTOC, and Interaction templates
- Global and local experts Populate Risk template (Delphi)
- Technical Team Estimate program and cumulative risk and scientific uncertainty (Delphi and PCD Risk 1)

NTTOC (natural origin)	Objective
Spring Chinook	VL (<5%)
Summer Chinook	L (<10%)
Steelhead	VL (<5%)
Sockeye	L (<10%)
Cutthroat	Mod (<41%)
Pacific Lamprey	VL (<5%)

Context of Assessment

- Spatial scale
 - To the river mouth except for Columbia River releases
- Temporal scale
 - -2013-2023
 - From day of release to river mouth
- Hatchery program level
- Risks to naturally produced NTTOC

Hatchery Template

- Species
- Release location
- Release time
 - Minimum, mean, and maximum values
 - Number released
 - Mean FL, Min FL, and CV
 - Survival to mouth
 - Residence time
 - % residuals

- NTTOC
- Minimum, mean, and maximum values
 - Abundance
 - Mean length and CV for each age class
 - Proportion of fish in each age class

Interactions Template

- Minimum, most likely, maximum values
 - % habitat complexity
 - % population overlap
 - % habitat segregation
 - Probability dominance results in body weight loss
 - Dominance mode
 - % of body weight loss that results in death
 - Maximum daily encounters per hatchery fish
 - Piscivory rate
 - Temperature
 - Disease mortality rate for fish with no dominance encounters
 - Disease mortality rate for fish with maximum dominance

- Interaction strength for each ecological mechanism x NTTOC metric cell (abundance, size, distribution)
- % impact to NTTOC abundance, size, and distribution

Risk Assessment and Uncertainty

Panelist	NTT 1	NTT 2	NTT 3
Herman	1	100	0
Peduncle	40	90	0
Fin	90	95	10
Gill	20	100	5
Beth	50	95	0
Risk (mean)	40	96	3
Uncertainty (SD)	34	4	4

Cumulative Risk (e.g. additive ass.)

Hatchery	NTT 1	NTT 2	NTT 3	Total
Program				
1	5	20	1	26
2	20	5	10	35
3	10	1	5	16
4	5	1	1	7
All	40	27	17	84

Relationship between Delphi and PCD Risk

- Determine if relationships exist between
 Delphi and model results
- Allows for updating of risks without having to convene experts again (e.g., change in program, new data available)
- Allows for comparison to other areas

Lessons Learned

- Big time Time investment increases with number of hatchery programs, NTTOC, experts, and amount of unconsolidated data that is available
- Uncomfortable assumption rich even in areas with much data
- Data scarcity for non salmon/steelhead (e.g., Pacific lamprey, cutthroat)

- 1. Conduct risk assessment
- 2. Use risk assessment to reduce risk and adapt monitoring efforts if necessary
- 3. Monitor and evaluate
- 4. Adaptive management

